Improving Gravity Surface Irrigation Performance

Understanding the Basics

Gravity surface irrigation relies on gravitational flow to distribute water across fields through furrows, borders, or basins. Performance depends on achieving uniform water distribution while minimizing losses.

Key Performance Factors

1. Field Preparation & Design

- Land Leveling: Critical for uniform water distribution
 - Use laser-guided leveling equipment
 - Maintain grades of 0.1-0.3% for most crops
 - Check and re-level fields annually

• Field Length Optimization

- Shorter runs (100-200m) generally perform better
- Balance between uniformity and labor costs
- Field Width: Match to equipment capabilities and crop requirements

2. Flow Rate Management

Inflow Rate Calculation

- Use Manning's equation or field testing
- Start with manufacturer recommendations, then fine-tune

• Stream Size Optimization

- Larger streams for longer runs or clay soils
- Smaller streams for shorter runs or sandy soils
- Cutback Method: Reduce flow rate after water reaches field end

3. Soil Management

• Infiltration Rate Assessment

- Conduct ring infiltrometer tests
- Adjust irrigation timing based on soil conditions

Soil Amendments

- Add organic matter to improve water holding capacity
- Use gypsum for sodic soils to improve infiltration

Compaction Prevention

- Avoid field operations on wet soils
- Use controlled traffic patterns

Practical Improvement Strategies

Water Application Efficiency

1. Timing Optimization

- Irrigate during cooler parts of day (early morning/evening)
- Monitor soil moisture to avoid over-irrigation
- Use weather-based scheduling

2. Advance Time Control

- Target advance times of 1/4 to 1/3 of total irrigation time
- Adjust inflow rates to achieve proper advance

3. Cutoff Timing

- Stop water when intake opportunity time matches crop needs
- Use soil moisture sensors for precise timing

Distribution Uniformity

1. Furrow/Border Maintenance

- Reshape furrows annually
- Remove debris and sediment buildup
- Maintain consistent cross-sectional area

2. Check Structures

- Install portable or permanent checks to control water depth
- Use siphon tubes for precise flow control
- Consider automated gates for larger systems

Technology Integration

1. Surge Irrigation

- Apply water in pulses to improve uniformity
- Reduces deep percolation losses
- Particularly effective on longer runs

2. Polyacrylamide (PAM) Application

- Reduces soil erosion and sealing
- Improves infiltration rates

Apply at 1-10 kg/ha depending on soil type

3. Real-time Monitoring

- Use flow meters to track application rates
- Install soil moisture sensors
- Consider wireless monitoring systems

Performance Evaluation Methods

Field Measurements

• Uniformity Coefficients

- Target distribution uniformity >80%
- Use Christiansen's uniformity coefficient

• Application Efficiency

- Aim for >70% application efficiency
- Calculate as: (Water stored in root zone / Water applied) × 100

Regular Assessment

• Monthly Performance Reviews

- Track water use vs. crop needs
- Monitor runoff and deep percolation

• Seasonal Adjustments

- Modify based on crop growth stage
- Adjust for changing weather patterns

Common Problems & Solutions

Problem	Causes	Solutions
Poor uniformity	Uneven land, wrong flow rates	Re-level fields, adjust inflow
Excessive runoff	High flow rates, poor infiltration	Reduce flow, improve soil structure
Deep percolation	Over-irrigation, sandy soils	Reduce application time, add organic matter
Soil erosion	High stream power, bare soil	Use PAM, maintain crop cover
4	•	· •

Cost-Benefit Considerations

Low-Cost Improvements

- Better timing and flow management
- Regular field maintenance

Improved cutoff timing

Medium Investment

- Surge irrigation systems
- Automated flow control
- Soil amendments

High Investment

- Laser leveling equipment
- Permanent infrastructure upgrades
- Advanced monitoring systems

Getting Started

1. Assess Current Performance

- Measure current uniformity and efficiency
- Identify main problem areas

2. Prioritize Improvements

- Start with low-cost management changes
- Focus on biggest performance gaps

3. Implement Gradually

- Test changes on small areas first
- Monitor results before full-scale adoption

4. Continuous Monitoring

- Keep detailed irrigation records
- Regularly evaluate and adjust practices

Expected Outcomes

Well-optimized gravity surface irrigation systems can achieve:

• Application efficiency: 70-85%

• **Distribution uniformity**: 80-90%

Water savings: 20-30% compared to poorly managed systems

Improved crop yields: 10-20% increase in many cases

The key is systematic improvement focusing on the factors that have the biggest impact on your specific field conditions and crop requirements.